Saturday, October 28, 2017

Initializing Pandas Dataframe

Dataframe can be initialized in multiple ways. Let's see some of the approaches below #createing dataframe with #list of countries, GDP and per capita countries_df = pd.DataFrame([["Germany",4.150,50206],
["India", 2.454, 7153],
["USA",18.558,57467]]) print(countries_df)
Result
0 1 2 0 Germany 4.150 50206 1 India 2.454 7153 2 USA 18.558 57467
#Let's give logical name to columns countries_df = pd.DataFrame([["Germany",4.150,50206],
["India", 2.454, 7153],
["USA",18.558,57467]], columns=("Country","GDP","Per Capita") ) print(countries_df)
Result Country GDP Per Capita 0 Germany 4.150 50206 1 India 2.454 7153 2 USA 18.558 57467
#Let's make country name as index #Let's give logical name to columns countries_df = pd.DataFrame([["Germany",4.150,50206],
["India", 2.454, 7153],
["USA",18.558,57467]], columns=("Country","GDP","Per Capita"), index=("Germany","India","USA") ) print(countries_df)
Result Country GDP Per Capita Germany Germany 4.150 50206 India India 2.454 7153 USA USA 18.558 57467
#Dataframe can be created with map also countries_df = pd.DataFrame([{"Country":"Germany","GDP":4.150,"Per Capita":50206}, {"Country":"India","GDP": 2.454, "Per Capita":7153}, {"Country":"USA","GDP":18.558,"Per Capita":57467} ]) print(countries_df)
Result
Country GDP Per Capita 0 Germany 4.150 50206 1 India 2.454 7153 2 USA 18.558 57467 #Dataframe with NaN values nan_df = pd.DataFrame(np.nan, index=[0,1,2], columns=("Country","GDP","Per Capita")) print(nan_df)
Result
Country GDP Per Capita 0 NaN NaN NaN 1 NaN NaN NaN 2 NaN NaN NaN #Putting all values to 0 zero_df = pd.DataFrame(0,index=[0,1,2], columns=("Country","GDP","Per Capita")) print(zero_df)
Result
Country GDP Per Capita 0 0 0 0 1 0 0 0 2 0 0 0
GitHub code

No comments:

Post a Comment